If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+24x+220=0
a = -4; b = 24; c = +220;
Δ = b2-4ac
Δ = 242-4·(-4)·220
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-64}{2*-4}=\frac{-88}{-8} =+11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+64}{2*-4}=\frac{40}{-8} =-5 $
| 2x-1-x=12 | | Y=45x+1600 | | 41-50+6x-5x=-9 | | 2x/3=x^2/3 | | 2x/3= | | 10x^2-209x+663=0 | | 3^(x-2)+3^x=810 | | 42+5t=t | | 1.8=0.2c | | 3^(x-2)+3^(x)=810 | | 21=2(l=3) | | x+x+-255=345 | | (40x)(11(1.5x))=600 | | -14m+9=7(5-2m)-7 | | 3x-6=4-7x= | | f(20)=0,8*20-4 | | 0,03+0,2=0,05x+0,65 | | d÷3=5 | | 0,04+0,3=0,05x+0,65 | | (3+4)(y+70)=350 | | -(4x-12)+x=3(2x-5) | | (10=3b)+6b=-14 | | 6p-2=20 | | f5=P2+P3+P7+P8+P9 | | x^2-5*x+(3/x)+√(9-x^2)=0 | | x+3-5*x+(3/x)+√(9-x^2)=x | | f4=P1+P5+P9+P11+P13 | | x+3-5*x+(3/x)+√(9-x^2)=0 | | b-3(b+1)=1-(4b-1) | | 20=315+5p^2/15+5p | | f3=P5+P8+P9+P12+P13 | | x2 –16x+39=0 |